Корсаков Р.О., 28.10.2015

Величина физического износа объектов капитального строительства на основании данных учета МОБТИ

Цель исследования

Целью настоящего исследования является определение, для объектов капитального строительства (ОКС) Московской области, зависимости степени физического износа здания от фактического срока жизни объекта и его основных конструктивных материалов (материала стен), и получение модели (аппроксимирующего уравнения), позволяющей решить обратную задачу: определение уровня физического износа по конструктивному материалу и сроку «жизни» объекта.

Исходные материалы

Исходными данными послужили сведения технических паспортов ОКС, содержащиеся в базе данных ${\sf MOБTИ}^1$, объединенной с данными ${\sf Pocpeectpa}$, и содержащей 1 880 147 записей (т.е. несколько менее 24% из 7 980 644 объектов кадастрового учета Московской области, участвующих в кадастровой оценке 2015 г.).

Наименование полей Росреестра - стандартные (соответствуют идентификаторам данных в xmlфайлах информационного обмена), а расшифровка значений содержащихся в полях МОБТИ приведена ниже из сопроводительной таблицы к рассматриваемой базе данных.

Данные ГУП МО "МОБТИ"

NΩ π/π	Наименование поля (колонки)	Наименование реквизита	Описание реквизита	
45	BLocation	Адрес (местоположение)	Адрес в виде строки	
46	BName	Наименование объекта	Наименование здания, сооружения, ОНС. Для помещений - наименование здания	
47	Bletter	Литера (литеры)		
48	BFloors	Этажность здания	Для зданий и помещений	
49	BWall	Материал стен	Материал стен в виде строки	
50	BYear_Built	Год постройки	Год постройки основной литеры	
51	BYear_Used	Год ввода в эксплуатацию	Год ввода в эксплуатацию дела	
52	Biznos_Date	Дата определения износа	Дата последней инвентаризации дела	
53	Biznos_Value	Износ	Износ основной литеры	
54	BArea	Общая площадь	Для зданий и помещений	
55	BParameter_Type	Тип основного параметра	Код параметра по классификатору МОБТИ	
56	BParameter_Title	Наименование основного параметра	Протяженность, объем, площадь застройки и пр.	
57	BParameter_Value	Значение основного параметра		

В полях — «CADASTRALNUMBER» - «КЕҮРАRAMETER_VALUE» содержатся данные филиала ФГБУ "ФКП Росреестра" по Московской области (в исходной версии базы представлена таблица включающая полный перечень полей, содержащихся в исходных xml-файлах Росреестра, однако, для целей настоящего исследования эти сведения не представляют интереса, а перечисленные —

¹ Физически представляющей собой набор файлов *.xlsx;

используются, в основном, для контроля), в полях от «BLOCATION» до «BPARAMETER_VALUE» содержатся дополняющие данные ГУП МО "МОБТИ" по соответствующим объектам кадастрового учета.

В таблице ниже представлен характер наполнения базы данных, с учетом наличия текстовых и числовых величин (для последних определены среднее – минимальное – максимальное значения).

Поле	Заполнено данными	В Т.Ч. ЧИСЛОВЫМИ	Среднее	Мин	Макс	
CADASTRALNUMBER	1 880 147	0	-	-	-	
REALTY	1 880 147	0			-	
DATECREATED	1 880 147	1 880 147	31.07.2012	28.06.2012	03.03.2015	
INV_NO	1 880 147	25 195	4,41005E+14	0	1,11111E+19	
FLOORS	1 356 092	1 356 092	2,2	-19661	21955	
WALL	1 655 052	1 655 052	61001004941	0	61001009000	
YEAR_BUILT	805 933	805 933	1979	0	5005	
YEAR_USED	31 803	31 803	1969	0	2015	
AREA	1 615 545	1 615 545	355,8	0	210004279,4	
KEYPARAMETER_TYPE	117 971	117 971	4,5	0	6	
KEYPARAMETER_VALUE	55 821	55 821	1022,0	0	1497550	
BLOCATION	1 880 147	12	8333333334	0	11111111111	
BNAME	1 880 126	27	740749639,3	0	20000000000	
BLETTER	1 878 679	53 994	743,6	0	1234567	
BFLOORS	1 056 996	1 056 996	3,4	-19661	21955	
BWALL	1 604 331	5	37,8	0	178	
BYEAR_BUILT	830 596	830 596	1984	1	25009	
BYEAR_USED	9 900	9 900	1988	196	2057	
BIZNOS_DATE	1 840 707	1 840 677	29.12.2004	06.01.1900	11.11.2020	
BIZNOS_VALUE	1 655 911	1 655 911	26,0	-7	30768	
BAREA	35 436	35 436	457,1	0,7	267168,5	
BPARAMETER_TYPE	27 527	27 527	2321,6	0	2339	
BPARAMETER_TITLE	202 714	0	-	-	-	
BPARAMETER_VALUE	94 994	94 994	708,8	0	1430000	

Как можно видеть по минимальным и максимальным значениям числовых полей, данные не свободны от ошибок и артефактов различного рода (например, в данных поля «этажность» явно присутствуют года постройки объекта; в полях «год ...» наличествуют значения «прошедших и будущих тысячелетий» и т.п.). Количество ошибочных данных невелико — до сотен и, по нашему мнению не оказывает сколь либо существенного влияния на итоговый результат обработки десятков и сотен тысяч значений, поэтому проводилась лишь предварительная обработка («чистка») исходной базы, на предмет исключения значений противоречащих здравому смыслу.

Для настоящего исследования использованы данные следующих полей:

BWALL; BYEAR_BUILT; BYEAR_USED; BIZNOS_DATE; BIZNOS_VALUE.

BWALL - материал стен в виде текстового описателя, значительно отличается от кодировки признака WALL (в справочнике он поименован как «dWall») Росреестра, насчитывающей 31 вариант числового кода, соответствующего определенному описанию материала стен (см. таблицу ниже).

Таблица 1 Перечень наименований материалов наружных стен здания, применяемый при ведении Единого государственного реестра объектов капитального строительства (dWall)

Код поля dWall	Основной материал
61001000000	Стены
61001001000	Каменные
61001001001	Кирпичные
61001001002	Кирпичные облегченные
61001001003	Из природного камня
61001002000	Деревянные
61001002001	Рубленые
61001002002	Каркасно-засыпные
61001002003	Каркасно-обшивные
61001002004	Сборно-щитовые
61001002005	Дощатые
61001002006	Деревянный каркас без обшивки
61001003000	Смешанные
61001003001	Каменные и деревянные
61001003002	Каменные и бетонные
61001004000	Легкие из местных материалов
61001005000	Из прочих материалов
61001006000	Бетонные
61001006001	Монолитные
61001006002	Из мелких бетонных блоков
61001006003	Из легкобетонных панелей
61001007000	Железобетонные
61001007001	Крупнопанельные
61001007002	Каркасно-панельные
61001007003	Монолитные
61001007004	Крупноблочные
61001007005	Из унифицированных железобетонных
2/22/22/2	элементов
61001007006	Из железобетонных сегментов
61001008000	Шлакобетонные
61001009000	Металлические
61001999000	Иное

В частности, поле BWALL дополняющих данных может быть заполнено как в соответствии с порядком перечисления конструктивных элементов здания в типовом техническом паспорте, например (сохранена орфография источника, используются не самые краткие описания):

«ленточн из бет блоков, из сборн ж/б фунд блоков, барьер - в 1 кирпич, в 0,5 кир сплошной на кирп ст с устройством цоколя»);

так и в порядке несколько отличном от привычного:

«АГВ 80 кв 3,металл рифленный в железных столбах, металл рифленный в железных столбах, Двойные тесовые, Бревенчатые, Кирпичные, Тесовые, Кирпичные, Тесовая, Бревенчатые, кирпичные, бревенчатые, кирпичные, бревенчатые, кирпичные, бетонные, кирпичные»;

либо:

«штакетный, горбыль, сплошной забор из нестроган. досок, тес в разбежку, от электроводонагревателя, кирпичные, бетонное, бревенчатые, бревенчатые,

бревенчатые, 1 тес, кирпичные, 1 тес, металлические, бревенчатые, 1 водяное отопление от АОГВ-17-4-3».

Если в первом случае более-менее понятно, что речь идет о кирпичном здании на фундаменте из ж/б блоков, то для 2-3 описания собственно материал стен характеризуемого здания не столь очевиден — описания начинаются то с наличия в доме АГВ, то с ограждения участка забором из штакетника и горбыля, и только где-то в середине фразы мелькает описание, которое можно отнести на счет стен — «бревенчатые, кирпичные, бетонные», «кирпичные, бетонное, бревенчатые», — возможно речь идет о здании со стенами из смешанных материалов, а возможно перечислены дополнительные характеристики хозяйственных построек, либо разнородные части единого здания.

В отличие от 31 варианта кодов материала стен Росреестра количество уникальных вариантов записей в поле BWALL составляет 419 996 для зданий, и 10 345 для сооружений.

Разделение выборки по классам конструктивных систем (КС)

Поскольку определение стоимости замещения объектов оценки предполагается проводить с использованием расценок приводимых в изданиях серии «Справочник оценщика» («КО-ИНВЕСТ»), следует проанализировать характер физического износа для объектов, которые возможно отнести к той или иной конструктивной системе. Разделение всех объектов-аналогов на конструктивные системы является авторской разработкой компании «КО-ИНВЕСТ», по мнению ее создателей, получившей широкое распространение. В справочнике указывается тип конструктивной системы в соответствии с классификацией, принятой в изданиях серии «Справочник оценщика» и информационно-аналитическом бюллетене «Индексы цен в строительстве».

Ниже приводится слегка измененная (по структуре) таблица описания конструктивных систем с их кодами, размещаемая в каждом издании Справочника².

Класс конструктивной системы	Основной материал
KC-1	Ограждающие конструкции - кирпич; несущие - железобетон, сталь
KC-1A	Ограждающие конструкции - мелкие стеновые ячеистые и слоистые блоки; несущие - железобетон, сталь
KC-2	Ограждающие конструкции - кирпич; несущие - древесина
KC-3	Ограждающие конструкции - железобетон; несущие - железобетон в бескаркасных системах
KC-4	Ограждающие конструкции - железобетон; несущие - железобетон в каркасных системах
KC-5	Ограждающие конструкции - железобетон; несущие - сталь
KC-6	Ограждающие конструкции - тонкий металлический лист и эффективные теплоизоляционные материалы; несущие - железобетон, сталь
KC-6A	Ограждающие конструкции - стекло; несущие - железобетон или стальной каркас
KC-7	Ограждающие конструкции - древесина; несущие - древесина и другие конструктивные материалы
KC-8	С преимущественным применением нерудных и бетона
KC-9	С преимущественным применением монолитного железобетона
KC-10	С преимущественным применением сборного железобетона
KC-11	С преимущественным применением конструкционной стали
KC-12	С преимущественным применением стальных труб
KC-13	С преимущественным применением древесины

² Например: в разделе «Информационная основа и принципы построения изданий КО-ИНВЕСТ серии «Справочник оценщика», «Общественные здания» - 2014; с.15.

-

Класс конструктивной системы	Основной материал	
KC-14	С преимущественным применением кабелей и проводов	
KC-15	Благоустройство прилегающей территории (озеленение)	

Собственно процесс классификации, т.е. отнесения объекта к тому или иному классу конструктивной системы, реализован в виде программы на VBA, алгоритм которой предполагает подсчет количества упоминаний материалов характеризующих класс КС, и присвоение объекту по максимальному (или первому, при равенстве) количеству, соответствующего кода КС, там где это возможно, исходя из содержания текстового описателя (например: такие лапидарные описатели как (дословно): «шалаш»; «хол. камера»; «фундамент гаража» не содержат информации о материалах из которых выполнен объект, и соответственно невозможно их уверенное отнесение к определенной КС).

Результатом классификации по КС явилось разделение выборки на подвыборки в соответствии с определенным классом качества:

Класс КС	Количество объектов
KC-01	568 451
KC-03	49 466
KC-04	28 290
KC-05	391
KC-06	106 719
KC-07	828 303
KC-08	3 095
KC-10	45
KC-11	1 916
KC-12	2 266
KC-13	4 762
KC-14	830
Bcero:	1 594 534

При этом стоит упомянуть, что не все результаты класса КС соотносятся с возрастом и износом здания (т.е. некоторые объекты не имеют сведений о годах постройки, или ввода в эксплуатацию, либо эти данные заведомо являются ошибочными — например, величина износа в 30768 («Износ основной литеры», по смыслу данных в колонке — в процентах).

В полученных файлах-подвыборках был рассчитан возраст объекта оценки на дату инвентаризации, соответствующую, по принятому допущению, моменту определения физического износа, отраженного в базе данных. Затем, для получения генерализованного результата, проводилось осреднение определений (значений) физического износа по интервалам в один год. На нижеприведенных гистограммах приведено распределение объектов по срокам фактической жизни (интервал — 5 лет).

Среднее значение года строительства, рассчитанное по совокупным данным МОБТИ и Росреестра (эти данные не всегда совпадают, и часто дополняют друг друга), составляет 1980 (год).

Анализ результатов данного этапа позволил прийти к выводу, что выборки объемом менее 1000 значений недостаточно четко описывают общую тенденцию подгруппы³, в связи с чем, данные соответствующих подгрупп (КС-5, КС-10, КС-14) были исключены из дальнейшего рассмотрения.

Остальные подвыборки демонстрируют четко выраженную, нелинейную зависимость величины физического износа от возраста ОКС.

³ Сильное рассеивание исходных данных в плоскости «возраст-износ» не позволяет получить зависимость с высокими прогностическими свойствами, что отражается низким коэффициентом детерминации.

На приведенном ниже графике, для объектов с КС-1 (кирпичные стены), отображены две зависящих от фактического срока жизни объектов характеристики: общее количество зданий указанного конструктивного класса, выраженное в % общего количества⁴ и величину их физического износа, %:

Некоторое недоумение вызывает избыточно высокая (по нашему мнению) доля «новых» объектов – около 58%. Это может быть результатом того, что в качестве даты их постройки ошибочно указана дата инвентаризации, или иных неточностей, в пользу чего говорит и высокий учтенный износ этих объектов – в среднем около 16%. Таки образом, эта точка распределения содержит заведомые ошибки, и исключена нами из построения модели физического износа. На графике собственно величины износа, заметно, что при достижении определенного возраста (в данном случае - 95 лет), отмечается устойчивое снижение величин износа. Это может быть как результатом неучтенных (в полях YEAR USED, BYEAR USED) дат капитального ремонта, резко снижающего физический износ здания, так и некоторых технических ошибок, искусственно удлиняющих расчетный срок существования объекта⁵. При этом, по характеру верхней кумулятивной кривой распределения количества зданий по сроку их жизни, можно видеть, что данное «зашумление» охватывает лишь 0,5% от общего количества охарактеризованных объектов, и, следовательно, без ущерба для результата может быть исключено из построения модели, в первую очередь из-за противоречия теоретическим представлениям о характере накопления износа материальными объектами, в общем случае описываемого семейством т.н. логистических (сигмоидальных; S-) кривых⁶.

Выбор характеризующего уравнения износа

Для подбора оптимального уравнения связи «возраст — физический износ», был использован программный продукт TableCutve 2D⁷. Данная программа позволяет исследовать характер связи двумерного распределения первичных данных посредством вычисления характеристик и коэффициентов нескольких тысяч функций различных типов, объединенных в десяток семейств.

⁴ 514 573 объекта, с известным возрастом.

⁵ В частности, это может быть связано с особенностью конвертации дат в табличном процессоре Эксель, где величина «0» (- не слишком удачный вариант маркировки отсутствия данных) соответствует «дате» «00.01.1900», что при последующем усечении стандартными функциями до года, создаст ошибочную дату постройки - 1900 год.

⁶ См. например описание https://ru.wikipedia.org/wiki/Сигмоида;

⁷ TableCutve 2D v2.03, компании Jandel Scientific (San Rafael, CA, USA), см. https://en.wikipedia.org/wiki/TableCurve 2D

Критерием выбора характеризующей функции, описывающей модель физического износа в исследуемых классах КС (подвыборках), нами выбраны 3 показателя:

- 1. Уровень коэффициента детерминации (R²);
- 2. Соответствие результирующей кривой теоретическим представлениям о старении физического объекта (накопление износа во времени);
- 3. Относительная простота уравнения связи.

В результате анализа перечня возможных решений, сгенерированного программой, в качестве основной модели было выбрано полиномиальное уравнение вида:

$y^{(0.5)=a+bx+cx^2+dx^3}$

где:

Х – фактический срок жизни ОКС, лет;

Ү – величина физического износа, %;

a, b, c, d – коэффициенты полинома.

Общий вид уравнения связи для подвыборки КС-1 приведен на рисунке ниже.

КС-1: Ограждающие конструкции - кирпич; несущие - железобетон, сталь

Rank 562 Eqn 6122 $y^{0.5}=a+bx+cx^2+dx^3$ r²=0.99113728 DF Adj r²=0.99074338 FitStdErr=0.013393238 Fstat=3392.2435 a=0.18884369 b=0.016622041 c=-0.00018397018 d=6.8020543e-07 8.0 0.7 0.6 0.5 Wearing, d.e. 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -50 50 100 150 Age, yr

Age, yr vs Wearing, d.e.

Рисунок 1 Общий вид графика уравнения связи для КС-1

По оси абсцисс расположен возраст ОКС в годах, по оси ординат – величина физического износа в долях единицы. Левая часть кривой, для возраста объекта менее 0, не имеет физического смысла. Правая, экстраполирующая, часть кривой демонстрирует резкое накопление износа объектами на интервале 120-150 лет, что соответствует представлениям о ветшании конструкций здания не подвергавшегося капитальному ремонту, даже при условии проведения своевременных текущих ремонтных и регламентных работ.

Ниже приводятся результаты для прочих классов КС. Следует обратить внимание, что для класса КС-12 использован тот же полином, но меньшего (второго) порядка; а для класса КС-13 подобрано уравнение, использующее при У функцию Ln(), вместо степенной с показателем 0,5.

Рисунок 2 Вид и характеристики модели физического износа для КС-1

КС-3: Ограждающие конструкции - железобетон; несущие - железобетон в бескаркасных системах

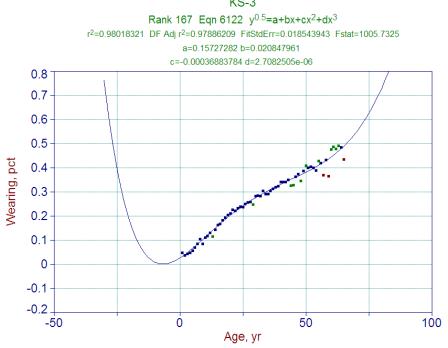


Рисунок 3 Общий вид графика уравнения связи для КС-3

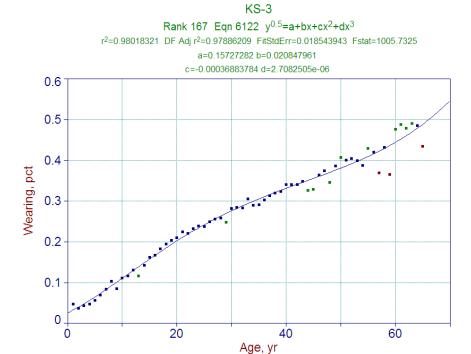


Рисунок 4 Вид и характеристики модели физического износа для КС-3

КС-4: Ограждающие конструкции - железобетон; несущие - железобетон в каркасных системах

KS-4

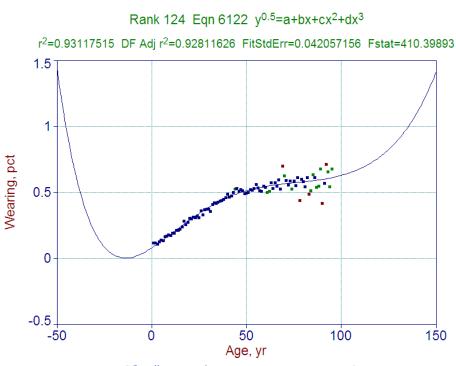


Рисунок 5 Общий вид графика уравнения связи для КС-4

KS-4 Rank 124 Eqn 6122 y^{0.5}=a+bx+cx²+dx³

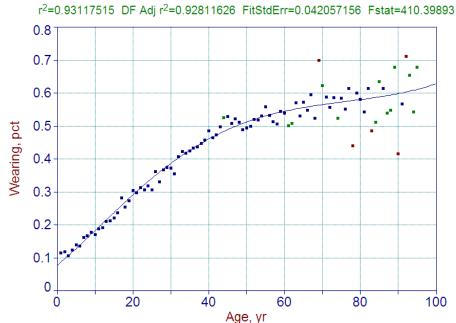


Рисунок 6 Вид и характеристики модели физического износа для КС-4

КС-6: Ограждающие конструкции - тонкий металлический лист и эффективные теплоизоляционные материалы; несущие - железобетон, сталь

Wearing, pct

-0.5

-1 -100

KS-6

Rank 780 Eqn 6122 y^{0.5}=a+bx+cx²+dx³

r²=0.95042264 DF Adj r²=0.9482192 FitStdErr=0.041075158 Fstat=581.50511

1.5

0.5

Рисунок 7 Общий вид графика уравнения связи для КС-6

Age, yr

100

200

Ó

KS-6 Rank 780 Eqn 6122 $y^{0.5}=a+bx+cx^2+dx^3$ r^2 =0.95042264 DF Adj r^2 =0.9482192 FitStdErr=0.041075158 Fstat=581.50511 0.9 8.0 0.7 Wearing, pct 0.6 0.5 0.4 0.3 0.2 0.1 0 20 40 60 80 100

Рисунок 8 Вид и характеристики модели физического износа для КС-4-6

Age, yr

КС-7: Ограждающие конструкции - древесина; несущие - древесина и другие конструктивные материалы

KS-7 Rank 210 Eqn 6122 y^{0.5}=a+bx+cx²+dx³

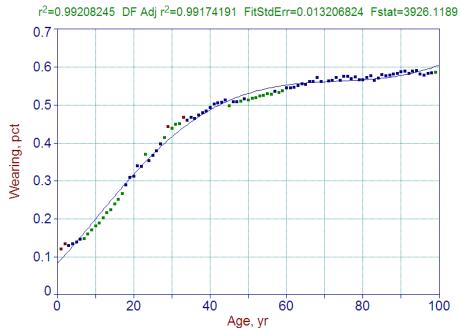


Рисунок 10 Вид и характеристики модели физического износа для КС-7

КС-11: С преимущественным применением конструкционной стали

KS-11
Rank 1764 Eqn 6122 $y^{0.5}$ =a+bx+cx²+dx³

0.75
0.25
0.25
0.25
0.25
0.25
0.25
0.72786657 FitStdErr=0.098025427 Fstat=57.585836

Рисунок 11 Общий вид графика уравнения связи для КС-11

KS-11 Rank 1764 Eqn 6122 y^{0.5}=a+bx+cx²+dx³

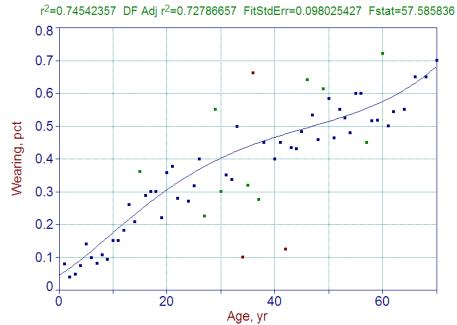
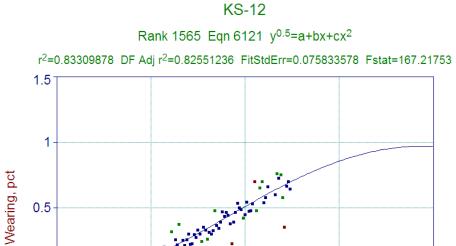



Рисунок 12 Вид и характеристики модели физического износа для КС-11

КС-12: С преимущественным применением стальных труб

KS-12 Rank 1565 Eqn 6121 y^{0.5}=a+bx+cx²

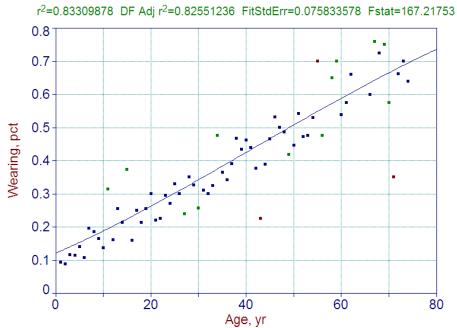


Рисунок 14 Вид и характеристики модели физического износа для КС-12

КС-13: С преимущественным применением древесины

KS-13

 r^2 =0.92292277 DF Adj r^2 =0.91902012 FitStdErr=0.034710343 Fstat=319.30666 0.9 8.0 0.7 Wearing, pct 0.6 0.5 0.4 0.3 0.2 0.1 -50 Ó 50 100 150 Age, yr

Рисунок 15 Общий вид графика уравнения связи для КС-13

KS-13 Rank 701 Eqn 6101 lny=a+bx+cx 2 +dx 3 r^2 =0.92292277 DF Adj r^2 =0.91902012 FitStdErr=0.034710343 Fstat=319.30666

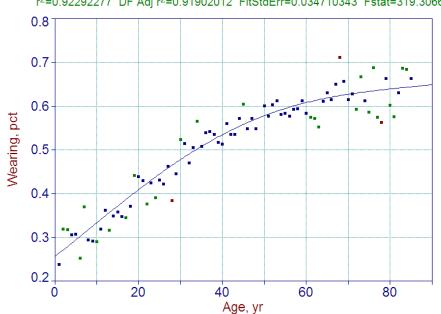


Рисунок 16 Вид и характеристики модели физического износа для КС-13

В таблице ниже приведены виды уравнений моделей износа по исследованным классам конструктивных систем, величины соответствующего коэффициента детерминации, и значения коэффициентов полинома.

В практических целях, для групп по которым не проводились расчеты (по недостатку данных, или трудности разделения по краткому описанию между группами, например КС-1 и КС-1А), указано уравнение, которое по нашему мнению наиболее подходит (исходя из близости конструктивных решений) для данного классам конструктивных систем. Расчет физического износа для классов КС-14 — КС-15 может быть проведен по классической формуле Балашова, исходя из нормативного срока жизни объектов этих классов.

Таблица 2 Характеристики моделей физического износа по классам конструктивных систем «КО-ИНВЕСТ» (КС-1 – КС-13)

Класс конструктивной системы	Вид уравнения	R ²	a	b	С	d
KC-1	$y^{(0,5)}=a+bx+cx^2+dx^3$	0,991	0,188843693159839	0,0166220405142664	-0,000183970176296834	6,80205428287843E-07
KC-1A	для КС-1					
KC-2	для КС-1					
KC-3	$y^{(0,5)}=a+bx+cx^2+dx^3$	0,980	0,157272821049337	0,0208479613213491	-0,00036883784461826	2,70825047808234E-06
KC-4	$y^{(0,5)}=a+bx+cx^2+dx^3$	0,931	0,276456197994047	0,0168990352014891	-0,00020791142885074	9,04764755046942E-07
KC-5	для КС-4					
KC-6	$y^{(0,5)}=a+bx+cx^2+dx^3$	0,950	0,243075149901537	0,0145161630738037	-0,00013023408132168	4,06340013682136E-07
KC-6A	для КС-6					
KC-7	$y^{(0,5)}=a+bx+cx^2+dx^3$	0,992	0,28616942124039	0,0182197904514548	-0,000242661529006032	1,09567184197103E-06
KC-8	для КС-3					
KC-9	для КС-3					
KC-10	для КС-4					
KC-11	$y^{(0,5)}=a+bx+cx^2+dx^3$	0,745	0,209704076599361	0,025073898878081	-0,000464053959345551	0,0000033064415844512
KC-12	y^(0,5)=a+bx+cx^2	0,833	0,34691384088066	0,00882619242841356	-0,0000305640800240743	
KC-13	In(y)=a+bx+cx^2+dx^3	0,923	-1,36576673929649	0,0295380811886011	-0,000328404211720729	1,28073852915973E-06

R² – коэффициент детерминации;

a, b, c, d – значения соответствующих коэффициентов полинома.

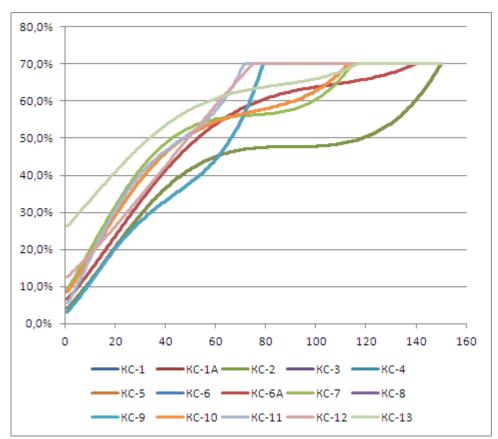


Рисунок 17 Графическое отображение моделей физического износа по классам конструктивных систем «КО-ИНВЕСТ» (по уравнениям из Таблица 2).

Полученный набор уравнений (моделей) физического износа, позволяет, в случае отсутствия прямого указания на величину физического износа объекта, определить, исходя из класса конструктивной системы (в первую очередь - материала стен) и срока жизни (срок от даты строительства, либо, при наличии, даты капитального ремонта - до даты оценки), наиболее вероятную величину физического износа объекта.

В расчетах рекомендуется использовать допущение, что при превышении расчетным значением физического износа объекта величины 70%, используется значение 70%; а для разрушенных объектов, при массовой оценке, использовать величину износа 80% (если в «неформальном описании» - поле «Адрес описательный» присутствуют упоминания «разрушен», «руинирован», «сгорел» и т.п.).

Значительный объем исходных данных, использованных для расчета моделей, а так же их пространственное распределение — в границах всей Московской области — позволяет надеяться на применимость полученных моделей для оценок физического износа объектов капитального строительства по крайней мере в границах Европейской части Российской Федерации.

* * *

_

⁸ поля Note и Other узла Address исходных xml-фалов;